Dynamic Programming

An Introduction to DP

Dynamic Programming?

A programming technique

= Solve a problem by breaking into smaller sub-
problems

= Similar to recursion with memoisation

Usefulness: Efficiency

= Exponential to Polynomial

> Trades memory for speed

Frequently used in Olympiads

Fibonacci Numbers

A sequence where every number is the sum of
the previous 2

1, 1’ 2’ 3, 5, 8’ 13’ eee
What is the N Fibonacci number, F(N)?

= We will solve this using several different
techniques

Fibonacci Numbers: Recursion

Split problem into smaller sub-problems
» F(N) = F(N-1) + F(N-2)

Solve the smaller sub-problems:

» F(N-1) = F(N-2) + F(N-3)

o efc.

Terminates when we reach the base case
= F(1), F(2) are defined to be 1

Fibonacci Numbers: Recursion

int fibonacci(int n)

{
if (n <=2)
return 1;
return fibonacci(n - 1) + fibonacci(n - 2);

Fibonacci Numbers: Recursion

F(7)
—
F(6) F(5)
F(5) F(4) F(4) F(3)
— "\ /N / O\ AN
F(4) F(3) F(3) F(2 F@) F F2) FQ)

N N N / N\
F(3) F(2) F(2) F@1) F(2) F(1) F(2) F(@)
™\
F(2) F(1)

Fibonacci Numbers: Recursion

13
—

/8\ /5\
— /\1 VANV
SN N N /\

1 1
— ™S

1 1

Fibonacci Numbers: Recursion

F(7)
—
F(6) F(5)
F(5) F(4) F(4) F(3)
~— N\ /N / O\ AN
F(4) F(3) F(3) F(2 F@) F(2 F(2) F@)

SN N N / \

F(3) F(2) F(2) Fa) F(2) F@) F(2) F(Q1)
™\
F(2) F(1)

Many repeated recursive calls!

Fibonacci Numbers: Recursion

Exponential time complexity — bad!
The cause: repeated sub-problems

Solution: store the results of each sub-problem
= Trade memory for speed

Fibonacci Numbers: Memoisation

Optimisation technique that avoids repeated
function calls

= When we find F(x), store it

= Next time we need it, use stored result

Fibonacci Numbers: Memoisation

F(7)=13
P
F(6) =8 5
/ \
F(5)=5
/ \
F(4) i

F(3)=2
T~

F(2)=1 F(1)=1

Exponential to Linear!

Fibonacci Numbers: DP

Memoisation, but bottom-up
= Start from base case
= Build up to the given problem

Fibonacci Numbers: DP

F(7) =13

F(6) = 8 — T~ 5
/ \
F(5)=5 3
/
F(4)=3 2
AN
F(3)=2 1
> N
F(2)=1 F(1)=1

Efficiency class: O(N)

Fibonacci Numbers: DP

int fib(int n)
{
int f{n+1];
fl0] = 1;
fl1] =1;
for (inti=2;i<=n;i++)
fli] = fli — 2] + f[i — 1];

return f[n];

Fibonacci Numbers

Our techniques require breaking the problem into
smaller sub-problems

= Used the relation F(N) = F(N-1) + F(N-2)

= Always reaches base case

The output F(N) only depends on the input N

= So bottom-up works

DP faster

How to DP

Identify the recurrence relation/dependency
Construct a recursive function as the solution

» The answer must depend only on the parameters
= A ‘mathematical’ function, e.g. F(N)

= Use as few parameters as possible

Use an array to store the results

= Multi-dimensional? (One for each parameter)
Nested Loops from base case to given problem
> Order must satisfy dependencies

DP vs Recursion

Advantages:

= Speed

= Code simpler
Disadvantages:

= Memory (multi-dimensional!)
= Conceptually more difficult

= Not always possible

DP vs Recursion with Memoisation

Theoretically equivalent
Same time complexity
Bottom-up vs Top-down
Advantages:
= Less memory
- Stack + function call overhead
- Memory saving trick (later)
Disadvantages:

= Conceptually more difficult
- Complicated dependencies?

Another example: Coin Counting

We want to make M cents of change
N different types of coins are available (v[1]..vIN])
Least number of coins?

Coin Counting

Dependency:

= coins(M) = 1+ min {coins(M-V[1]),...,coins(M-V[N])}
= Invalid coins(M): no smaller problems solved

= Base case: coins(0) = 0

Implementation

= A coins array with coins[o] = 0

= Everything else initialised to -1

= Loop from 1 to M, using the dependency for coins[i]

Coin Counting
mn-n-nnn-

Min # 0
coins

Given coins (VIN]D: {2,3,5}

Coin Counting

int N, M;
int V[N];
int coins[M + 11];

set(coins[0], coins[M], -1);
coins[0] = 0;
for (inti=1;i<=M; i++)
{

int best = M;

for (intj=0;j <N;j++)

if (V[j]<=1i&& coins[i—V[j]]!=-1&& coins[i— V[j]] + 1 < best)
best = coins[i— V[j]] + 1;
coinsli] = best;

)

Backtracking

Unnecessary info suggests DP
But sometimes, require the ‘path’ to the solution

Coin Counting:
= Find the minimum number of coins
= But also output which coins they are

Backtracking

General: For each value from base to M:
» Use array as before
= But also use an array to store path
- Memory concerns
Coins: For each value from o to M:
= Store min # coins

= Store last coin used
- Can backtrack to find path from o to M
- Trade speed for memory

Backtracking: Coin Counting
mn-nnnnn-

Min # 0
coins

Last -1 -1 2 3 2 5 3 2
coin

Given coins (VIN]D: {2,3,5}

Backtracking: Coin Counting
M | o i = 5 4 5 5 7

Min # 0 -1 1 1 2 1 2 2
coins

Last -1 -1 2 3 2 5 3 2
coin

Given coins (VIN]D: {2,3,5}

‘Path’: {5,2}

Backtracking: Coin Counting

int N, M;

int VIN];

int coins[M + 1];

int coinUsed[M + 1];

coins[0] = 0;
for (inti=1;i<=M; i++)
{
int best = M;
int coin = -1;
for (intj=0;j<N; j++)
if (V[j] <=i&& coins[i—V[j]] + 1 < best)

{
best = coins[i — V[j]] + 1;
coin = j;
}
coins[i] = best; Less memory, more time...

coinUsed[i] = coin;

Multi-Dimensional DPs

So far, 1D

= FIN] = F[N-1] + F[N-2]

= Coins[M]=1+ min {coins(M-V[1]),...,coins(M-V[N])}
2D or more often required

Example: Number of paths

You start at the bottom left of a NxM rectangular
grid, and can only move upward or right. How

many ways are there of getting to the top right
corner?

J > fND

B

Number of Paths

Want the # paths from start to end

State for DP: # paths from start to any given
square

Identify the dependency

= Can only get to a square from below or the left
= There is no overlap from below or from left

= # ways to get to a square is the sum

X X+y
% 4
Start

Number of Paths

Dependency:

» paths[width][height] = paths[width-1][height] +
paths[width][height-1]

= 2D recurrence relationship

Having identified this:

= Construct the recursive function

= Use a 2D array to store results

= Use nested looping in a valid order to populate
array

Number of Paths

Use nested looping in a valid order

Outer Loop

ﬁ A A A A

Number of Paths

Use nested looping in a valid order

Outer L
uter Loop S
L A 15 35 70
1 4 10 20 35
1 3 6 10 15
1 2 3 4 5

Memory Saving Technique

Array for all values is inefficient

= May be too large

= Particularly for > 1D

Store only subset of the parameter space
Dependency determines which values needed
Like a slider

= Change the letter if 3/5 chars before are “I":
. TFTTFTFFIFTTTFTF

Memory Saving Technique

Fibonacci:

= F(N) = F(N-1) + F(N-2)
Only need previous 2 values
= Array unnecessary

Memory Saving Technique

int fib (int n)
{
int f1, f2 = 1;
for (inti=2;i<=n;i++)
{
int temp = f2;
f2 =1 + 2;
f1 = temp;
}

return f2;

}

Memory saving technique

More relevant for higher dimensions
Often store only the last row, or last 2 rows, etc.

Number of paths:
= Only previous column needed

' |

DP: The difficulty

Knowing what to DP on (which dependency/
‘state’?)

= Which parameters to use

= Sometimes use DP for a sub-problem only

Finding the relation/dependency

How to ldentify a DP Problem

Typical Traits:

= Some main integer variables, e.g. N

= Neither large nor very small (30 < N < 10000)
= O(N?) or O(N?3) acceptable

‘States’ exist (configurations/situations)

= Higher states can be derived from lower states
These are only rough rules of thumb

= No fool-proof rules exist

Example: Subset Sums

For many sets of consecutive integers from 1 through N (1 <= N <=
39), one can partition the set into two sets whose sums are identical.

For example, if N=3, one can partition the set {1, 2, 3} in one way so
that the sums of both subsets are identical: {3} and {1,2}

Reversing the order counts as the same partitioning

If N=7, there are four ways to partition the set {1, 2, 3, ... 7} so that
each partition has the same sum:

> {1,6,7} and {2,3,4,5}

> {2,5,7} and {1,3,4,6}

> {3,4,7} and {1,2,5,6}

° {1,2,4,7} and {3,5,6}

Given N, your program should print the number of ways a set
containing the integers from 1 through N can be partitioned into two
sets whose sums are identical. Print o if there are no such ways.

Reminder: How to DP

Identify the state & recurrence relation
Construct a recursive function as the
solution

> The answer must depend only on the parameters
= A ‘mathematical’ function, e.g. F(N)

» Use as few parameters as possible

Use an array to store the results

= Multi-dimensional? (One for each parameter)
Nested Loops from base case to given problem
> Order must satisfy dependencies

Subset Sums

State:

= partitions(N,D) counts the # of partitionings of
{1,2,...,,N} into two sets which differ by D

= D < N(N+1)/2

Subset Sums

State:

= Partitions(N,D) counts the # of partitionings of
{1,2,...,,N} into two sets which differ by D

= D < N(N+1)/2

Dependency:

°Pp (N9|D|) = p(N_lalD_Nl) + p(N_19|D+N|)
- If we remove the no. ‘N’, we need the difference

between the remaining sets to be D+N

This was the difficult part

Reminder: How to DP

Identify the state & recurrence relation
Construct a recursive function as the solution

» The answer must depend only on the parameters
= A ‘mathematical’ function, e.g. F(N)

- Use as few parameters as possible

Use an array to store the results

= Multi-dimensional? (One for each parameter)
Nested Loops from base case to given
problem

> Order must satisfy dependencies

Subset Sums

Base case: N=1

° pl1][1] =1

» p[1][x] = o for other x

Nested looping in a valid order:

> Need all p[N-1][i] before any p[N][j]

= Loop from N = 0 to N = problem size
- For each N, find p[N][D] for each D

Subset Sums

6 = N(N+1)/2 \

[y

© © © O O +» O

Y,

© © © »r O +» O

w

= O = O = O ¥

Outer loop

\ 4

