
Dynamic Programming 
An Introduction to DP 



Dynamic Programming? 

• A programming technique 

▫ Solve a problem by breaking into smaller sub-
problems 

▫ Similar to recursion with memoisation 

• Usefulness: Efficiency 

▫ Exponential to Polynomial 

▫ Trades memory for speed 

• Frequently used in Olympiads 

 

 



Fibonacci Numbers 

• A sequence where every number is the sum of 

the previous 2 

• 1, 1, 2, 3, 5, 8, 13, … 

• What is the 𝑁𝑡ℎ  Fibonacci number, F(N)? 

▫ We will solve this using several different 
techniques 



Fibonacci Numbers: Recursion 

• Split problem into smaller sub-problems 

▫ F(N) = F(N-1) + F(N-2) 

• Solve the smaller sub-problems: 

▫ F(N-1) = F(N-2) + F(N-3) 

▫ etc. 

• Terminates when we reach the base case 

▫ F(1), F(2) are defined to be 1 



Fibonacci Numbers: Recursion 

int fibonacci(int n) 

{ 

 if (n <= 2) 

 return 1; 

 return fibonacci(n - 1) + fibonacci(n - 2); 

} 



Fibonacci Numbers: Recursion 
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Fibonacci Numbers: Recursion 
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Fibonacci Numbers: Recursion 
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Many repeated recursive calls! 



Fibonacci Numbers: Recursion 

• Exponential time complexity – bad! 

• The cause: repeated sub-problems 

• Solution: store the results of each sub-problem 

▫ Trade memory for speed 



Fibonacci Numbers: Memoisation 

• Optimisation technique that avoids repeated 

function calls 

▫ When we find F(x), store it 

▫ Next time we need it, use stored result 



Fibonacci Numbers: Memoisation 

F(6) = 8 

3 F(5)= 5 

F(4)=3 2 

F(3)=2 1 

F(2)=1 F(1)=1 

5 

F(7)=13 

Exponential to Linear! 



Fibonacci Numbers: DP 

• Memoisation, but bottom-up 

▫ Start from base case 

▫ Build up to the given problem 



Fibonacci Numbers: DP 

F(6) = 8 

3 F(5)= 5 

F(4)=3 2 

F(3)=2 1 

F(2)=1 F(1)=1 

5 

F(7) = 13 

Efficiency class: O(N) 



Fibonacci Numbers: DP 

int fib(int n) 
{ 
 int f[n+1]; 
 f[0] = 1; 
 f[1] = 1; 
 for (int i = 2; i <= n; i++) 
  f[i] = f[i – 2] + f[i – 1]; 
 return f[n]; 
} 

 



Fibonacci Numbers 

• Our techniques require breaking the problem into 

smaller sub-problems 

▫ Used the relation F(N) = F(N-1) + F(N-2) 

▫ Always reaches base case 

• The output F(N) only depends on the input N 

▫ So bottom-up works 

• DP faster 



How to DP 

• Identify the recurrence relation/dependency 

• Construct a recursive function as the solution 

▫ The answer must depend only on the parameters 

▫ A ‘mathematical’ function, e.g. F(N) 

▫ Use as few parameters as possible 

• Use an array to store the results 

▫ Multi-dimensional? (One for each parameter) 

• Nested Loops from base case to given problem 

▫ Order must satisfy dependencies 



DP vs Recursion 

• Advantages: 

▫ Speed 

▫ Code simpler 

• Disadvantages: 

▫ Memory (multi-dimensional!) 

▫ Conceptually more difficult 

▫ Not always possible 

 



DP vs Recursion with Memoisation 

• Theoretically equivalent 
• Same time complexity 
• Bottom-up vs Top-down 
• Advantages: 

▫ Less memory 
 Stack + function call overhead 
 Memory saving trick (later) 

• Disadvantages: 
▫ Conceptually more difficult 

 Complicated dependencies? 

 



Another example: Coin Counting 

• We want to make M cents of change 

• N different types of coins are available (V[1]…V[N]) 

• Least number of coins? 
 



Coin Counting 

• Dependency: 

▫ coins(M) = 1+ min {coins(M-V[1]),…,coins(M-V[N])} 

▫ Invalid coins(M): no smaller problems solved 

▫ Base case: coins(0) = 0 

• Implementation 

▫ A coins array with coins[0] = 0 

▫ Everything else initialised to -1 

▫ Loop from 1 to M, using the dependency for coins[i] 

 



Coin Counting 

M 0 1 2 3 4 5 6 7 

Min # 
coins 

0 -1 1 1 2 1 2 2 

Given coins (V[N]): {2,3,5} 



Coin Counting 
int N, M; 
int V[N]; 
int coins[M + 1]; 
 
set(coins[0], coins[M], -1); 
coins[0] = 0; 
for (int i = 1; i <= M; i++) 
{ 
 int best = M; 
 for (int j = 0; j < N; j++) 
  if (V[j] <= i && coins[i – V[j]] != -1 && coins[i – V[j]] + 1 < best) 
   best = coins[i – V[j]] + 1; 
 coins[i] = best; 
} 

 



Backtracking 

• Unnecessary  info suggests DP 

• But sometimes, require the ‘path’ to the solution 

• Coin Counting: 

▫ Find the minimum number of coins 

▫ But also output which coins they are 



Backtracking 

• General: For each value from base to M: 

▫ Use array as before 

▫ But also use an array to store path 

 Memory concerns 

• Coins: For each value from 0 to M: 

▫ Store min # coins 

▫ Store last coin used 

 Can backtrack to find path from 0 to M 

 Trade speed for memory 



Backtracking: Coin Counting 

M 0 1 2 3 4 5 6 7 

Min # 
coins 

0 -1 1 1 2 1 2 2 

Last 
coin 

-1 -1 2 3 2 5 3 2 

Given coins (V[N]): {2,3,5} 



Backtracking: Coin Counting 

M 0 1 2 3 4 5 6 7 

Min # 
coins 

0 -1 1 1 2 1 2 2 

Last 
coin 

-1 -1 2 3 2 5 3 2 

Given coins (V[N]): {2,3,5} 
 

‘Path’: {5,2} 



Backtracking: Coin Counting 
int N, M; 
int V[N]; 
int coins[M + 1]; 
int coinUsed[M + 1]; 
 
coins[0] = 0; 
for (int i = 1; i <= M; i++) 
{ 
 int best = M; 
 int coin = -1; 
 for (int j = 0; j < N; j++) 
  if (V[j] <= i && coins[i – V[j]] + 1 < best) 
  { 
   best = coins[i – V[j]] + 1; 
   coin = j; 
  } 
 coins[i] = best; 
 coinUsed[i] = coin; 
} 

 

Less memory, more time… 



Multi-Dimensional DPs 

• So far, 1D 

▫ F[N] = F[N-1] + F[N-2] 

▫ Coins[M]=1+ min {coins(M-V[1]),…,coins(M-V[N])} 

• 2D or more often required 

 



Example: Number of paths 

You start at the bottom left of a NxM rectangular 

grid, and can only move upward or right. How 

many ways are there of getting to the top right 

corner? 

 

 
END 

START 



Number of Paths 

• Want the # paths from start to end 

• State for DP: # paths from start to any given 

square 

• Identify the dependency 

▫ Can only get to a square from below or the left 

▫ There is no overlap from below or from left 

▫ # ways to get to a square is the sum 

 x x+y 

y 

Start 



Number of Paths 

• Dependency: 
▫ paths[width][height] = paths[width-1][height] + 

 paths[width][height-1] 

▫ 2D recurrence relationship 

• Having identified this: 

▫ Construct the recursive function 

▫ Use a 2D array to store results 

▫ Use nested looping in a valid order to populate 
array 



Number of Paths 

• Use nested looping in a valid order 

Outer Loop 



Number of Paths 

• Use nested looping in a valid order 

1 5 15 35 70 

1 4 10 20 35 

1 3 6 10 15 

1 2 3 4 5 

1 1 1 1 1 

Outer Loop 



Memory Saving Technique 

• Array for all values is inefficient 

▫ May be too large 

▫ Particularly for > 1D 

• Store only subset of the parameter space 

• Dependency determines which values needed 

• Like a slider 

▫ Change the letter if 3/5 chars before are ‘T’: 

 T F T T F T F F T F T T T F T F 

 



Memory Saving Technique 

• Fibonacci: 

▫ F(N) = F(N-1) + F(N-2) 

• Only need previous 2 values 

▫ Array unnecessary 

 



Memory Saving Technique 

int fib (int n) 
{ 
 int f1, f2 = 1; 
 for (int i = 2; i <= n; i++) 
 { 
  int temp = f2; 
  f2 = f1 + f2; 
  f1 = temp; 
 } 
 return f2; 
} 

 



Memory saving technique 

• More relevant for higher dimensions 

• Often store only the last row, or last 2 rows, etc. 

• Number of paths: 

▫ Only previous column needed 



DP: The difficulty 

• Knowing what to DP on (which dependency/ 

‘state’?) 

▫ Which parameters to use 

▫ Sometimes use DP for a sub-problem only 

• Finding the relation/dependency 

 



How to Identify a DP Problem 

• Typical Traits: 

▫ Some main integer variables, e.g. N 

▫ Neither large nor very small (30 < N < 10000) 

▫ O(𝑁2) or O(𝑁3) acceptable 

• ‘States’ exist (configurations/situations) 

▫ Higher states can be derived from lower states 

• These are only rough rules of thumb 

▫ No fool-proof rules exist 



Example: Subset Sums 
• For many sets of consecutive integers from 1 through N (1 <= N <= 

39), one can partition the set into two sets whose sums are identical.  

• For example, if N=3, one can partition the set {1, 2, 3} in one way so 
that the sums of both subsets are identical: {3} and {1,2}  

• Reversing the order counts as the same partitioning 

• If N=7, there are four ways to partition the set {1, 2, 3, ... 7} so that 
each partition has the same sum:  

▫ {1,6,7} and {2,3,4,5}  

▫ {2,5,7} and {1,3,4,6}  

▫ {3,4,7} and {1,2,5,6}  

▫ {1,2,4,7} and {3,5,6}  

• Given N, your program should print the number of ways a set 
containing the integers from 1 through N can be partitioned into two 
sets whose sums are identical. Print 0 if there are no such ways.  



Reminder: How to DP 

• Identify the state & recurrence relation 
• Construct a recursive function as the 

solution 
▫ The answer must depend only on the parameters 
▫ A ‘mathematical’ function, e.g. F(N) 
▫ Use as few parameters as possible 

• Use an array to store the results 
▫ Multi-dimensional? (One for each parameter) 

• Nested Loops from base case to given problem 
▫ Order must satisfy dependencies 



Subset Sums 

• State: 

▫ partitions(N,D) counts the # of partitionings of 
{1,2,…,N} into two sets which differ by D 

▫ D ≤ N(N+1)/2 



Subset Sums 

• State: 

▫ Partitions(N,D) counts the # of partitionings of 
{1,2,…,N} into two sets which differ by D 

▫ D ≤ N(N+1)/2 

• Dependency: 

▫ p (N,|D|) = p(N-1,|D-N|) + p(N-1,|D+N|) 

 If we remove the no. ‘N’, we need the difference 
between the remaining sets to be D±N 

• This was the difficult part 



Reminder: How to DP 

• Identify the state & recurrence relation 
• Construct a recursive function as the solution 

▫ The answer must depend only on the parameters 
▫ A ‘mathematical’ function, e.g. F(N) 
▫ Use as few parameters as possible 

• Use an array to store the results 
▫ Multi-dimensional? (One for each parameter) 

• Nested Loops from base case to given 
problem 
▫ Order must satisfy dependencies 



Subset Sums 

• Base case: N=1 

▫ p[1][1] = 1 

▫ p[1][x] = 0 for other x 

• Nested looping in a valid order: 

▫ Need all p[N-1][i] before any p[N][j] 

▫ Loop from N = 0 to N = problem size 

 For each N, find p[N][D] for each D 

 



Subset Sums 

D | N 1 2 3 

0 0 0 1 

1 1 1 0 

2 0 0 1 

3 0 1 0 

4 0 0 1 

5 0 0 0 

6 = N(N+1)/2 0 0 1 

Outer loop 


